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Presentation outline

• Advantages of hyperspectral remote sensing data

• Why radiative transfer model is a key component

• How to deal with large amount of hyperspectral data

• Information content analysis

• How to retrieve climate related parameters

• Extending PCRTM to solar spectral region

• Summary and Conclusions
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Advantages of Hyperspectral Remote Sensing Data

• One spectrum contains information on numerous climate relevant quantities

– Vertical atmospheric temperature profiles

– Vertical atmospheric water profiles

– O3, CO2, CO, CH4, and N2O vertical profiles or column densities

– Cloud height, particle size, optical depth, and phase

– Aerosol information under heavy loading conditions

– Land/ocean surface temperatures

– Land/ocean emissivity spectra

– Outgoing Longwave Radiation (OLR), TOA radiative flux, cooling rate …

• All parameters are measured simultaneously

– SI-traceable calibration is done on the whole spectrum

– No issues with errors associated with multiple data sources

– Good for radiative forcing/feedback and trend determinations (less error sources)



CLARREO Science Team Meeting, Hampton, Virginia, May 17-19, 2011 3

Why radiative transfer model is important

• A radiative transfer model (forward model) is used to quantify the relationship between 

satellite data (y) and atmospheric/surface properties (x)

–

• It is needed to separate contributions of climate-related parameters from satellite data

– Green house gas radiative forcing …

• It is needed to perform end-to-end sensor performance simulations 

– A Key component in climate OSSE

– Help to refine instrument specifications
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How to deal with large amount of  

hyperspectral data?

• Radiative transfer equation is a highly non-linear double integral differential equation
– Need to perform radiative transfer calculations through ~100 atmospheric layers at ~1 million of 

wavelengths

– Line-by-line (LBL) forward model is too slow to handle huge amounts of satellite data 

• Traditional fast radiative transfer models still too slow to simulate large amount of hyperspectral 
data

– Take long time to simulate instantaneous CLARREO spectra

– Either use super computer or faster models

• Hyperspectral data are spectrally correlated
– Only the first ~100 leading eigenvectors are used for optimal fingerprinting

– The ~100 EOF captures all essential information of thousands of channels

• Principal-Component-based Radiative Transfer Model (PCRTM) is ideal
– Channel-to-channel spectral correlations are captured by eigenvectors 

– Reduce dimensionality of original spectrum by a factor of 10-90

– Spectral correlations are used to reduce number of radiative transfer calculations

– Very accurate relative to line-by-line (LBL) RT model 

– 3-4 orders of magnitude faster than LBL RT models

– A factor of 2-100 times faster than channel-based RT models

• CLARREO PCRTM model have been created with 4 spectral resolutions
– 0.25 cm-1, 0.5 cm-1, 1.0 cm-1, and 2.0 cm-1

• PCRTM models for AIRS, IASI, and NAST-I have been created
– Well tested using real satellite and airborne remote sensing data

• References on the PCRTM model and retrieval algorithms
– Liu et Applied Optics 2006

– Saunders et al., J. Geophys. Res., 2007

– Liu et al. Q. J. R. Meterol. Soc. 2007

– Liu et al. ACP 2009
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Typical accuracy of the forward model ( < 0.05K 

relative to LBL)
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PCRTM is very fast relative to channel-based radiative 

transfer models and it handles clouds efficiently

NAST-I Spectral 

Band

Number of 

Channels

No. of RT Calc. for 

All NAST Channels

Predictors per 

Channel

PCRTM 8632 310-900 0.04-0.1

PFAST 8632 8632 ~40

OSS 8632 22316 2.59

• PCRTM needs far less radiative transfer calculations and needs small number of 

predictors to calculate channel radiances

– 1-2 orders of magnitude smaller than channel-based RT models

• PCRTM can handle as many as 40 layers of clouds in principal

– Compares well with DISORT

– Orders of magnitude faster than DISORT

– Only slightly slower than clear sky radiative transfer calculation

• PCRTM provides derivatives of radiance with respect to atmospheric parameters for 

each forward model

– Saves 10-100 forward model runs compared to finite difference method
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Examples of simulated CLARREO spectra and 

orbital observations using PCRTM

• Movie made by Joe based on Dave’s Young’s original discussion

• Spectra simulations based on Seiji and Fred’s work
• CERES single FOV product, MODIS cloud field, and GOES-4 profiles

• Using about 100 CPUs

• Takes PCRTM 14 days to simulate 6 years of hyperspectral data

• Takes MODTRAN (a channel-based radiative transfer model) 85 time longer
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CLARREO Information Content Analysis 
(methodology)

• Averaging kernel provide information on retrieval 

system

– Location and magnitude of the peaks relate to information at a 

particular height

– Width of the peaks relate to vertical resolution

– Integrated area of the averaging kernel provides relative 

contribution from a priori and measurements

– Trace of Ax provides degree of freedom

• Averaging kernel is profile dependent

– Generate CLARREO spectra with hundreds of atmospheric 

profiles

– Probability Density Function (PDF) or mean of the AxFor 

different instrument configurations (K)

• Different noise (Sy)

• Different spectral resolution (K)

• Different band coverage (K)

• With and without Far IR band (K)



Ax 
xn
x

 (KTSy
1K  Sa

1)1KTSy
1K
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CLRREO Information Content Analysis
(Impact of Far IR band) 

• The baseline spectral resolution for this study is 1.0 cm-1

− Need more realistic CLARREO instrument noise

• Far-IR impact on atmospheric vertical temperature information

– The vertical resolution decreases without far-IR portion of the spectrum (dotted lines, DOF: 8.11 vs. 9.34) 

• Far-IR impact on atmospheric vertical water information

– The vertical resolution decreases without far-IR portion of the spectrum (dotted lines, DOF: 4.48 vs 6.13)

– The far-IR band provide more information for higher altitude moisture

• There are other things to consider for Far-IR

• Far-IR spectral region is essential in TOA long-wave radiance flux calculation

• Far-IR provides more constraints on atmospheric clouds
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Hyperspectral data is capable of separating Ice 

clouds from water clouds
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Ways to explore information content of CLARREO 

hyperspectral data

• Invert each instantaneous spectrum first

– Obtain atmospheric, cloud, and surface properties

– Study zonal/global mean of the product

– Perform time series analysis (taking into account of natural 

variabilities)

• Perform radiance averaging first

– Perform retrieval of individual climate variables using spectral 

fingerprinting method

– Less sensitive to instantaneous instrument noise



Xn1  Xa  (K
TSy

1K  I  Sa
1)1KTSy

1[(yn Ym)K(Xn  Xa)]



y  Sa  r

a  (ST1S)1ST1y

  nat   shape  nl
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A method has been developed to retrieve cloud 

and atmospheric properties simultaneously

• Temperature, moisture, and ozone cross-sections

• Plots are deviation from the mean

• Fine water vapor structures captured by the retrieval system 

• A very cloudy sky condition
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Example of retrieved global atmospheric and 

surface properties using PCRTM algorithm

Atmospheric temperature at 9 km for July 2009 Surface skin temperature for July 2009 

Surface emissivity for July 2009 Atmospheric carbon monoxide mixing ratio for July 2009 



CLARREO Science Team Meeting, Hampton, Virginia, May 17-19, 2011

Comparison of PCRTM calculated LW radiances with 

CERES observations (work done by Fred and Seiji) 

• This dataset has realistic cloud derived from 

MODIS observations

• Compares well with CERES

• Will use this dataset to compare the 

performance of direct retrieval vs. spectral 

fingerprinting

14
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Apply PCRTM to Orbiting Carbon Observatory (OCO) 

O2 A-band

15

• Model reflectance of R-branch of O2 A-band

• OCO spectral resolution (0.045 nm)

• 6 EOF, 7 Mono needed for R-branch of O2 A-band

• Maximum RMS error < 2.32 x 10-5 for 7500 sample
• Various clouds

• Aerosols

• Ocean and various land surface types

• Various atmospheric profiles

• Bias error close to zero
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Apply PCRTM to SCIAMACHY O2 A-band

16

• Model reflectance of R-branch of O2 A-band

• SCIAMACHY spectral resolution (~0.2 nm)

• 5 EOF, 7 Mono needed for R-branch of O2 A-band

• RMS error < 3 x 10-5 

• Bias error close to zeros

• Will extend the method to CLARREO spectral resolution (~4 nm spacing)
• Need even less point

• Will enable much faster OSSE and end-to-end simulations
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Summary and Conclusions

• Forward model is a key component in analysing hyperspectral data
– End-to-end sensor trade studies

– Realistic global long term data simulations and OSSE experiment

– Satellite data analysis and data assimilations

• PCRTM is a useful tool specific for hyperspectral data with thousands of channels
– PCRTM compresses thousands of spectral channels into 100-200 EOFs

– 3-4 orders of magnitude faster than Line-by-line models

– 2-100 times faster than traditional forward model

– Very accurate relative LBL models

– Multiple scattering cloud calculations included

– Model has been developed for AIRS, NAST,IASI, CLARREO

– Work started to extend the method to UV-VIS spectral region (OCO, SCIAMACHY)

• Study underway to compare direct retrieval vs spectral fingerprinting to derive climate 
related quantities

– Using IASI as proxy data

– Using simulated spectral from satellite and model products


